HomeGroupsTalkZeitgeist
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Ordinary Differential Equations with…
Loading...

Ordinary Differential Equations with Applications (Texts in Applied…

by Carmen Chicone

MembersReviewsPopularityAverage ratingConversations
14None683,257 (3.5)None

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English (1)

Book description
Haiku summary

Amazon.com Product Description (ISBN 0387985352, Hardcover)

This book is based on a year long course taught by the author to graduate students at the University of Missouri over several years. The main objective is to provide, in the first semester, a student friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations, and then, in the second semester, to expand on these ideas by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem. A proof of the existence and uniqueness results for solutions of differential equations based on the Implicit Function Theorem in Banach spaces is presented. Then in the latter sections of the book, the basic ideas of perturbation theory are introduced as applications of the Implicit Function Theorem (with the Lyapunov-Schmidt reduction technique): continuation of subharmonics and the existence of periodic solutions via the averaging method. Finally, local bifurcations-saddle node and Hopf-are studied as applications of the Lyapunov-Schmidt reduction. The book also contains material that is different from standard treatments. For example, the Fiber Contraction Principle is introduced as a useful tool for proving the smoothness of functions that are obtained as fixed points of contractions. This idea is used to give an alternate proof of the smoothness of the flow of a differential equation. Later, the Fiber Contraction Principle appears in the nontrivial proof of the smoothness of invariant manifolds at a rest point. The proof for this existence and smoothness of the stable center manifolds is obtained as a corollary of a more general existence theorem for invariant manifolds at a rest point in the presence of a "spectral gap". The ideas introduced in this section can be extended to infinite dimensions.

(retrieved from Amazon Thu, 12 Mar 2015 18:23:37 -0400)

(see all 2 descriptions)

No library descriptions found.

Quick Links

Swap Ebooks Audio

Popular covers

Rating

Average: (3.5)
0.5
1
1.5
2
2.5
3 1
3.5
4 1
4.5
5

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 119,397,041 books! | Top bar: Always visible