HomeGroupsTalkMoreZeitgeist
Search Site
This site uses cookies to deliver our services, improve performance, for analytics, and (if not signed in) for advertising. By using LibraryThing you acknowledge that you have read and understand our Terms of Service and Privacy Policy. Your use of the site and services is subject to these policies and terms.

Results from Google Books

Click on a thumbnail to go to Google Books.

Loading...

Electricity and Magnetism (International Library of Sociology)

by E. R. Dobbs

MembersReviewsPopularityAverage ratingConversations
9None1,976,628NoneNone
Electromagnetism is basic to our understanding of the properties of matter and yet is often regarded as a difficult part of an underĀ­ graduate physics course. In this book answers are developed from first principles to such questions as: What is electricity? What is electromagnetism? Why are some materials magnetic and others non-magnetic? What is magnetism? Physics answers these questions in two related ways. On the one hand the classical explanation is in terms of classical concepts: electric charge q, electric and magnetic fields (E and B) and electric currents. On the other hand the microscopic (or 'atomic ') explanation is in terms of quantum concepts: electrons, nuclei, electron orbits in atoms, electron spin and photons. Microscopic explanations underlie classical ones, but do not deny them. The great triumphs of classical physics are mechanics, gravitation, thermodynamics, electromagnetism and relativity. Historically they began at the time of Newton (seventeenth century) and were completed by Maxwell (nineteenth century) and Einstein (early twentieth century). Microscopic explanations began with J J. Thomson's discovery of the electron in 1897. For most physical phenomena it is best to seek a classical explanation first, especially phenomena at room temperature, or low energy, when quantum effects are small. Although this text is primarily concerned with classical explanations in a logical, self-consistent sequence, they are related to microscopic (quantum) explanations at each stage.… (more)
BookCAT (1) Box 22 (1) physics (1) science (1) to-read (1)
None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Original language
Canonical DDC/MDS
Canonical LCC

References to this work on external resources.

Wikipedia in English

None

Electromagnetism is basic to our understanding of the properties of matter and yet is often regarded as a difficult part of an underĀ­ graduate physics course. In this book answers are developed from first principles to such questions as: What is electricity? What is electromagnetism? Why are some materials magnetic and others non-magnetic? What is magnetism? Physics answers these questions in two related ways. On the one hand the classical explanation is in terms of classical concepts: electric charge q, electric and magnetic fields (E and B) and electric currents. On the other hand the microscopic (or 'atomic ') explanation is in terms of quantum concepts: electrons, nuclei, electron orbits in atoms, electron spin and photons. Microscopic explanations underlie classical ones, but do not deny them. The great triumphs of classical physics are mechanics, gravitation, thermodynamics, electromagnetism and relativity. Historically they began at the time of Newton (seventeenth century) and were completed by Maxwell (nineteenth century) and Einstein (early twentieth century). Microscopic explanations began with J J. Thomson's discovery of the electron in 1897. For most physical phenomena it is best to seek a classical explanation first, especially phenomena at room temperature, or low energy, when quantum effects are small. Although this text is primarily concerned with classical explanations in a logical, self-consistent sequence, they are related to microscopic (quantum) explanations at each stage.

No library descriptions found.

Book description
Haiku summary

Current Discussions

None

Popular covers

Quick Links

Rating

Average: No ratings.

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 203,193,856 books! | Top bar: Always visible