HomeGroupsTalkZeitgeist
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Quantum theory for mathematicians by Brian…
Loading...

Quantum theory for mathematicians

by Brian C. Hall

MembersReviewsPopularityAverage ratingConversations
4None2,001,085NoneNone
Recently added byRMaitra, normspier2001

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English (3)

Book description
Haiku summary

Amazon.com Product Description (ISBN 146147115X, Hardcover)

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics.

The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces.  The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

(retrieved from Amazon Thu, 12 Mar 2015 18:09:35 -0400)

No library descriptions found.

Quick Links

Swap Ebooks Audio

Popular covers

Rating

Average: No ratings.

Is this you?

Become a LibraryThing Author.

 

You are using the new servers! | About | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 116,937,834 books! | Top bar: Always visible