HomeGroupsTalkZeitgeist
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Deep Learning (Adaptive Computation and…
Loading...

Deep Learning (Adaptive Computation and Machine Learning series)

by Ian Goodfellow

MembersReviewsPopularityAverage ratingConversations
54None218,071 (5)None

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Information from the German Common Knowledge. Edit to localize it to your language.
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English

None

Book description
Haiku summary

Amazon.com Product Description (ISBN 0262035618, Hardcover)

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

(retrieved from Amazon Fri, 02 Dec 2016 09:46:12 -0500)

No library descriptions found.

Quick Links

Swap Ebooks Audio

Popular covers

Rating

Average: (5)
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5 3

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 119,622,664 books! | Top bar: Always visible