HomeGroupsTalkZeitgeist
This site uses cookies to deliver our services, improve performance, for analytics, and (if not signed in) for advertising. By using LibraryThing you acknowledge that you have read and understand our Terms of Service and Privacy Policy. Your use of the site and services is subject to these policies and terms.
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

The Design and Analysis of Efficient…
Loading...

The Design and Analysis of Efficient Learning Algorithms (ACM Doctoral…

by Robert E. Schapire

MembersReviewsPopularityAverage ratingConversations
2None2,551,640NoneNone
Recently added byTangurena, bocere

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English

None

Book description
Haiku summary

Amazon.com Product Description (ISBN 0262193256, Hardcover)

Approaches to building machines that can learn from experience abound - from connectionist learning algorithms and genetic algorithms to statistical mechanics and a learning system based on Piaget's theories of early childhood development. This monograph describes results derived from the mathematically oriented framework of computational learning theory. Focusing on the design of efficient learning algorithms and their performance, it develops a sound, theoretical foundation for studying and understanding machine learning.

Since many of the results concern the fundamental problem of learning a concept from examples, Schapire begins with a brief introduction to the Valiant model, which has generated much of the research on this problem. Four self-contained chapters then consider different aspects of machine learning. Their contributions include a general technique for dramatically improving the error rate of a "weak" learning algorithm that can also be used to improve the space efficiency of many known learning algorithms; a detailed exploration of a powerful statistical method for efficiently inferring the structure of certain kinds of Boolean formulas from random examples of the formula's input-output behavior; the extension of a standard model of concept learning to accommodate concepts that exhibit uncertain or probabilistic behavior; (including a variety of tools and techniques for designing efficient learning algorithms in such a probabilistic setting); and a description of algorithms that can be used by a robot to infer the "structure" of its environment through experimentation.

Robert E. Schapire received his doctorate from the Massachusetts Institute of Technology. He is now a member of the Artificial Intelligence Principles Research Department at AT&T Bell Laboratories.

(retrieved from Amazon Thu, 12 Mar 2015 18:12:41 -0400)

No library descriptions found.

Quick Links

Popular covers

None

Rating

Average: No ratings.

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 126,551,886 books! | Top bar: Always visible