HomeGroupsTalkZeitgeist
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Probability Measures on Metric Spaces (Ams…
Loading...

Probability Measures on Metric Spaces (Ams Chelsea Publishing)

by K. R. Parthasarathy

MembersReviewsPopularityAverage ratingConversations
17None587,099NoneNone
Recently added bymodelsoffinance

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English (5)

Book description
Haiku summary

Amazon.com Product Description (ISBN 082183889X, Hardcover)

Having been out of print for over 10 years, the AMS is delighted to bring this classic volume back to the mathematical community. With this fine exposition, the author gives a cohesive account of the theory of probability measures on complete metric spaces (which he views as an alternative approach to the general theory of stochastic processes). After a general description of the basics of topology on the set of measures, he discusses regularity, tightness, and perfectness of measures, properties of sampling distributions, and metrizability and compactness theorems. Next, he describes arithmetic properties of probability measures on metric groups and locally compact abelian groups. Covered in detail are notions such as decomposability, infinite divisibility, idempotence, and their relevance to limit theorems for "sums" of infinitesimal random variables. The book concludes with numerous results related to limit theorems for probability measures on Hilbert spaces and on the spaces $C[0,1]$. The Mathematical Reviews comments about the original edition of this book are as true today as they were in 1967. It remains a compelling work and a priceless resource for learning about the theory of probability measures. The volume is suitable for graduate students and researchers interested in probability and stochastic processes and would make an ideal supplementary reading or independent study text.

(retrieved from Amazon Thu, 12 Mar 2015 18:18:16 -0400)

No library descriptions found.

Quick Links

Swap Ebooks Audio

Popular covers

Rating

Average: No ratings.

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 119,396,118 books! | Top bar: Always visible