HomeGroupsTalkZeitgeist
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Understanding Molecular Simulation…
Loading...

Understanding Molecular Simulation (Computational Science Series, Vol 1)

by Daan Frenkel

MembersReviewsPopularityAverage ratingConversations
161615,960 (4.5)None

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

Probably the best book on Molecular computer simulations. Gives the how to and the physical reasoning behind it. If you are a grad student or researcher trying to get into this stuff, this is a great book to start with. ( )
  yapete | Jun 1, 2008 |
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English (2)

Book description
Haiku summary

Amazon.com Product Description (ISBN 0122673514, Hardcover)

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text.

Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on:

· Transition path sampling and diffusive barrier crossing to simulaterare events
· Dissipative particle dynamic as a course-grained simulation technique
· Novel schemes to compute the long-ranged forces
· Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations
· Multiple-time step algorithms as an alternative for constraints
· Defects in solids
· The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules
· Parallel tempering for glassy Hamiltonians

Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

(retrieved from Amazon Thu, 12 Mar 2015 17:59:04 -0400)

(see all 2 descriptions)

Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: Transition path sampling and diffusive barrier crossing to simulaterare events Dissipative particle dynamic as a course-grained simulation technique Novel schemes to compute the long-ranged forces Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations Multiple-time step algorithms as an alternative for constraints Defects in solids The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.… (more)

Quick Links

Swap Ebooks Audio
2 wanted

Popular covers

Rating

Average: (4.5)
0.5
1
1.5
2
2.5
3
3.5
4 1
4.5
5 1

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 119,722,201 books! | Top bar: Always visible