HomeGroupsTalkZeitgeist
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Elements of Artificial Neural Networks…
Loading...

Elements of Artificial Neural Networks (Complex Adaptive Systems)

by Kishan Mehrotra

MembersReviewsPopularityAverage ratingConversations
16None615,960 (4)None

None.

None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Series (with order)
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Publisher series
Original language

References to this work on external resources.

Wikipedia in English (1)

Book description
Haiku summary

Amazon.com Product Description (ISBN 0262133288, Hardcover)

Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them.The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management.The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods.The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website.Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.

(retrieved from Amazon Thu, 12 Mar 2015 17:59:04 -0400)

No library descriptions found.

Quick Links

Popular covers

Rating

Average: (4)
0.5
1
1.5
2
2.5
3
3.5
4 1
4.5
5

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 125,501,341 books! | Top bar: Always visible