HomeGroupsTalkExploreZeitgeist
Search Site
Have you checked out SantaThing, LibraryThing's gift-giving tradition?
dismiss
This site uses cookies to deliver our services, improve performance, for analytics, and (if not signed in) for advertising. By using LibraryThing you acknowledge that you have read and understand our Terms of Service and Privacy Policy. Your use of the site and services is subject to these policies and terms.
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Loading...

Stochastic Calculus and Financial Applications

by J. Michael Steele

MembersReviewsPopularityAverage ratingConversations
40None509,307 (3)None
The Wharton School course on which the book is based is designed for energetic students who have had some experience with probability and statistics, but who have not had advanced courses in stochastic processes. Even though the course assumes only a modest background, it moves quickly and - in the end - students can expect to have the tools that are deep enough and rich enough to be relied upon throughout their professional careers.The course begins with simple random walk and the analysis of gambling games. This material is used to motivate the theory of martingales, and, after reaching a decent level of confidence with discrete processes, the course takes up the more demanding development of continuous time stochastic process, especially Brownian motion. The construction of Brownian motion is given in detail, and enough material on the subtle properties of Brownian paths is developed so that the student should sense of when intuition can be trusted and when it cannot. The course then takes up the It¿ integral and aims to provide a development that is honest and complete without being pedantic. With the It¿ integral in hand, the course focuses more on models.Stochastic processes of importance in Finance and Economics are developed in concert with the tools of stochastic calculus that are needed in order to solve problems of practical importance. The financial notion of replication is developed, and the Black-Scholes PDE is derived by three different methods. The course then introduces enough of the theory of the diffusion equationto be able to solve the Black-Scholes PDE and prove the uniqueness of thesolution.… (more)
None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review

Belongs to Series

Belongs to Publisher Series

You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Original language
Canonical DDC/MDS
Canonical LCC

References to this work on external resources.

Wikipedia in English (1)

The Wharton School course on which the book is based is designed for energetic students who have had some experience with probability and statistics, but who have not had advanced courses in stochastic processes. Even though the course assumes only a modest background, it moves quickly and - in the end - students can expect to have the tools that are deep enough and rich enough to be relied upon throughout their professional careers.The course begins with simple random walk and the analysis of gambling games. This material is used to motivate the theory of martingales, and, after reaching a decent level of confidence with discrete processes, the course takes up the more demanding development of continuous time stochastic process, especially Brownian motion. The construction of Brownian motion is given in detail, and enough material on the subtle properties of Brownian paths is developed so that the student should sense of when intuition can be trusted and when it cannot. The course then takes up the It¿ integral and aims to provide a development that is honest and complete without being pedantic. With the It¿ integral in hand, the course focuses more on models.Stochastic processes of importance in Finance and Economics are developed in concert with the tools of stochastic calculus that are needed in order to solve problems of practical importance. The financial notion of replication is developed, and the Black-Scholes PDE is derived by three different methods. The course then introduces enough of the theory of the diffusion equationto be able to solve the Black-Scholes PDE and prove the uniqueness of thesolution.

No library descriptions found.

Book description
Haiku summary

Popular covers

Quick Links

Rating

Average: (3)
0.5
1
1.5
2
2.5
3 1
3.5
4
4.5
5

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 164,335,176 books! | Top bar: Always visible