HomeGroupsTalkMoreZeitgeist
Search Site
This site uses cookies to deliver our services, improve performance, for analytics, and (if not signed in) for advertising. By using LibraryThing you acknowledge that you have read and understand our Terms of Service and Privacy Policy. Your use of the site and services is subject to these policies and terms.
Hide this

Results from Google Books

Click on a thumbnail to go to Google Books.

Loading...

Parkett No. 47 Tony Oursler, Raymond Pettibon, Thomas Schutte (v. 47)

by Tony Oursler, Raymond Pettibon, Thomas Schutte

Series: Parkett (47)

MembersReviewsPopularityAverage ratingConversations
5None2,470,027 (2)None
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process--including how to verify the quality of the underlying clusters--through supervision, human intervention, or the automated generation of alternative clusters.… (more)
None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review

» Add other authors

Author nameRoleType of authorWork?Status
Tony Ourslerprimary authorall editionscalculated
Pettibon, Raymondmain authorall editionsconfirmed
Schutte, Thomasmain authorall editionsconfirmed

Belongs to Series

Parkett (47)
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Publisher's editors
Blurbers
Original language
Canonical DDC/MDS
Canonical LCC

References to this work on external resources.

Wikipedia in English

None

Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process--including how to verify the quality of the underlying clusters--through supervision, human intervention, or the automated generation of alternative clusters.

No library descriptions found.

Book description
Haiku summary

Popular covers

Quick Links

Rating

Average: (2)
0.5
1
1.5
2 1
2.5
3
3.5
4
4.5
5

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 162,430,112 books! | Top bar: Always visible