HomeGroupsTalkMoreZeitgeist
Search Site
This site uses cookies to deliver our services, improve performance, for analytics, and (if not signed in) for advertising. By using LibraryThing you acknowledge that you have read and understand our Terms of Service and Privacy Policy. Your use of the site and services is subject to these policies and terms.

Results from Google Books

Click on a thumbnail to go to Google Books.

Loading...
MembersReviewsPopularityAverage ratingConversations
37None637,546 (3.25)None
This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications.  Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable.  Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. … (more)
None
Loading...

Sign up for LibraryThing to find out whether you'll like this book.

No current Talk conversations about this book.

No reviews
no reviews | add a review

» Add other authors

Author nameRoleType of authorWork?Status
Jean-Michel Marinprimary authorall editionscalculated
Robert, Christian P.main authorall editionsconfirmed
You must log in to edit Common Knowledge data.
For more help see the Common Knowledge help page.
Canonical title
Original title
Alternative titles
Original publication date
People/Characters
Important places
Important events
Related movies
Awards and honors
Epigraph
Dedication
First words
Quotations
Last words
Disambiguation notice
Bayesian Essentials with R is the title of a newer edition of the book "Bayesian Core: A Practical Approach to Computational Bayesian Statistics", see http://www.springer.com/gp/book/97803...
Publisher's editors
Blurbers
Original language
Canonical DDC/MDS
Canonical LCC

References to this work on external resources.

Wikipedia in English

None

This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications.  Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable.  Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics. 

No library descriptions found.

Book description
Haiku summary

Popular covers

Quick Links

Rating

Average: (3.25)
0.5
1
1.5
2
2.5
3 1
3.5 1
4
4.5
5

Is this you?

Become a LibraryThing Author.

 

About | Contact | Privacy/Terms | Help/FAQs | Blog | Store | APIs | TinyCat | Legacy Libraries | Early Reviewers | Common Knowledge | 195,077,923 books! | Top bar: Always visible